学会誌「高圧力の科学と技術」
Rev. High Pressure Sci. Technol.

Vol.3  No.3(1994) Abstract


特集-半導体-
Rev. High Pressure Sci. Technol. 3-3,199-206(1994)
VIb族S,Se,TeとC70の圧力誘起構造相転移
Pressure-Induced Structural Phase Transition of VIb Element, S, Se, Te and Solid C70
赤浜 裕一 小林 本忠 川村 春樹
Yuichi AKAHAMA Mototada KOBAYASHI Haruki KAWAMURA
X-ray diffraction measurement for selenium and sulfur under high pressure was performed through the angle dispersive method. The structural-transition sequence similar to that of Te was found and the unified interpretation was obtained for pressure-induced structural phase transition of VIb element except for oxygen. In the case of solid C70, the transition from fcc to a simple rhombohedral structure was observed and the rhombohedral phase was concluded to be realized by the partial freezing out of molecular rotation.

[DAC, X-ray-diffraction, angle dispersive method, phase transition, VIb element and C70]
〒678-1297 兵庫県赤穂郡上郡町光都3-2-1 姫路工業大学理学部物質科学科
Faculty of Science, Himeji Institute of Technology, 1479-1 Kanaji, Kamigohri, Ako-gun, Hyougo 678-1297



特集-半導体-
Rev. High Pressure Sci. Technol. 3-3,207-213(1994)
非晶質ゲルマニウムカルコゲナイド系物質の圧力効果
Effect of Pressure on the Amorphous Ge-Chalcogenide Materials
大成 誠之助
Seinosuke ONARI
The effects of the hydrostatic pressure on the optical gap Eg of the amorphous Ge-chalcogenide semiconductors are reviewed. The absorption edge Eg shifts largely to low frequency side and the parameterΓ of the Urbach tail increases with the increase of the pressure. For the composition near GeS2, sudden anomalous changes of Eg and alsoΓ are observed in the pressure range of 2〜4 GPa. These anomalous effects are considered to originate from the change of the internal structure. Raman spectra exhibit interesting large change under the pressure especially in the low frequency region, and the characteristic properties of the Raman spectra of the amorphous Ge-chalcogenide semiconductors are also reviewed.

[amorphous Ge-chalcogenide, optical gap, Raman, low frequency]
〒305-8573 つくば市天王台 1-1-1 筑波大学物理工学系 
Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 



特集-半導体-
Rev. High Pressure Sci. Technol. 3-3,214-220(1994)
擬一次元白金錯体の電子構造と高圧効果
Pressure Effects on the Electronic Structures in Quasi One-Dimensional
Platinum Compounds
黒田 規敬
Noritaka KURODA
The relationship is outlined between the mixed-valence state and the electronic structure in the halogen-bridged platinum compounds. Pressure dependencies of the optical absorption edge and the Raman frequency of halide stretching mode are interpreted in terms of the electron-lattice coupling characteristic of the PtX chains. Presented are the results of the recent optical experiments on the pressure-induced phase transition in PtCl and PtBr, demonstrating the role of the long range order among the chains. Also discussed is the behavior of the midgap absorption band, which is attributable to solitons, in PtCl under high pressures.
〒860-8555 熊本市黒髪2-39-1 熊本大学工学部知能生産システム工学科



特集-半導体-
Rev. High Pressure Sci. Technol. 3-3,221-226(1994)
半磁性半導体 Cd1-xMnxTe の発光
Photoluminescence in Semimagnetic Semiconductors CdMnTe
中原純一郎
Jun'ichiro NAKAHARA
The photoluminescences (PL) in semimagnetic semiconductor CdMnTe are reviewed except quantum wells. There are three kinds of PL related to energy gap, excited states of d-electrons with the character of localized states and unknown infrared PL. The formation of magnetic polaron, giant g-factor of electrons and holes of band, stable point of excited Mn ion are discussed from photoluminescence. The excited states of infrared PL is assigned as d-electron excited states with large lattice distortion using pressure coefficient of photoluminescence peak energy and time profile of the PL intensity.
〒060-0810 札幌市北区北十条西8 北海道大学大学院理学研究科 
Division of Science, Hokkaido University, Kita-ku, Sapporo 060-0810



特集-半導体-
Rev. High Pressure Sci. Technol. 3-3,227234(1994)
GaAs/AlAs 超格子の電子構造とその圧力依存性
Electronic Structure of GaAs/AlAs Short-Period Superlattices Studied by
Photoluminescence Spectroscopy under High Pressure
南 不二雄
Fujio MINAMI
We review the electronic structure of GaAs/AlAs short-period superlattices, which have been clarified through optical measurements under high pressure. The symmetry of the conduction subband in the superlattices is discussed on the basis of the pressure dependence of the photoluminesce. Based on the energy and lifetime vs. pressure data, pressure-induced Γ-X band mixing effect is also discussed. In addition, we describe the band discontinuity in GaAs/AlInP quantum well structures, which has been determined by high-pressure photoluminescence measurements.

[DAC, uniaxal stress, superlattice, quantum well, photoluminescence, GaAs/Alas, GaAs/AlInp, band mixing, exciton, lifetime, band offset]
〒152 東京都目黒区大岡山2-12-1 東京工業大学理学部応用物理学科
Department of Applied Physics, Tokyo Institute of Technology, 2-12-1 Oolayama, Meguro-ku, Tokyo 152



特集-半導体-
Rev. High Pressure Sci. Technol. 3-3,235-240(1994)
有機金属気相成長GaInPのフォトルミネッセンスの圧力依存性
Pressure Dependence of Photoluminescence in GaInP
Grown by Metalorganic Vapor Phase Epitaxy
小林 利彦
Toshihiko KOBAYASHI
High-pressure photoluminescence (PL) studies of ordered Ga0.5In0.5P alloys grown on GaAs substrates by metalorganic vapor phase epitaxy (MOVPE) are reviewed. The anomalous reduction in the direct band-gap energy and the high-pressure PL behavior depend on growth temperature and substrate misorientation. The possible explanations for some of the trends and the complexities involved in PL properties in ordered GaInP samples are presented, which include effects of repulsion between theΓ-folded energy states in the CuPt-type ordered structure.

[GaInP, photoluminescence, band-gap energy, CuPt-type ordered structure, natural super- lattice, MOVPE]
〒657-8501 神戸市灘区六甲台町1-1 神戸大学工学部電気電子工学科
Faculty of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501



特集-半導体-
Rev. High Pressure Sci. Technol. 3-3,241-245(1994)
共鳴トンネリングに及ぼす圧力効果
Pressure-induced effects on resonant tunneling
財部健一1 匠 正治2 箕村 茂1
Kenichi TAKARABE, Masaharu TAKUMI, Shigeru MINOMURA
Current-voltage characteristics of triple barriers resonant tunneling diodes has been measured at a temperature of 77 K and pressures up to 2 Gpa. Peak-to-valley current ratio(PVR) of the diode decreased as increasing pressure. This change is explained qualitatively in terms of a variation of the effective mass of electron under pressure.
1〒700-0005 岡山市理大町 1-1 岡山理科大学 理学部 基礎理学科
Physics Laboratory, Faculty of Science, Okayama University of Science, 1-1, Ridai-cho, Okayama, 700-0005
2〒814-0180 福岡市城南区七隅 8-19-1 福岡大学 理学部 応用物理学科
Department of Applied Physics, Faculty of Science, Fukuoka University , Jonan-ku, Fukuoka, 814-0180



解説
Rev. High Pressure Sci. Technol. 3-3,246-254(1994)
液体-気体超臨界領域までの低密度流体セレンのX線吸収法による 密度測定
Density Measurement for Expanded Fluid Selenium up to the Liquid-Vapor
Supercritical Region by the X-ray Absorption Method
細川 伸也1 久保井 健2 田村 剛三郎3
Shinya HOSOKAWA, Ken KUBOI, Kozaburo TAMURA
Density of expanded fluid selenium was measured in the temperature and pressure ranges up to 1650℃ and 700 bar including the liquid-vapor critical point by the x-ray absorption method. For the measurements, a new type of cell made of polycrystalline sapphire and a high-pressure vessel of authors' own design were developed. We obtained the critical temperature, pressure and density of 1615±5℃, 385±5 bar and 1.85±0.03 gcm-3, respectively. The anomaly that isochores bend in the semiconductor-metal transition region was observed, and we found that the isochores again bend in the metal-insulator transition region near the critical point. The diameter in the liquid-vapor coexistence curve is deviated strongly from the law of the rectilinear diameter to the liquid side near the critical point.

[Expanded fluid selenium, X-ray absorption method, Liquid-vapor critical point, Coexistence curve, Rectilinear diameter law]
1Institut fur Physikalische- Kem- und Makromolekulare Chemie, Philipps-Universitat Marburg, D-35032 Marburg, GERMANY
2〒692-8601 安来市安来町2107-2 日立金属?梶@治金研究所
3〒739-8521 東広島市鏡山1-7-1 広島大学総合科学部
Faculty of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hirosima 739-8521



解説
Rev. High Pressure Sci. Technol. 3-3,255-263(1994)
エネルギー資源開発における水熱反応の利用
Utilization of Hydrothemal Reaction in Explorating Energy Resources
榎本 兵治1  守谷 武彦2  木下 睦1
Heiji ENOMOTO Takehiko MORIYA Atushi KINOSHITA
As the basis for developing new technologies in explorating energy resources such as heavy oils, oil sands and coals, hydrothermal reaction is interesting, being considered as one of the means of utilization of the underground as a "georeactor". In this report, heavy oil and oil sand recovery technologies under development in which hydrothermal reaction is involved are reviewed, and upgrading and desulfurization mechanisms in hydrothermal reaction occurring in the conventional steam flood are described.

[heavy oil, oil sands, hydrothermal reaction, steamflood, in-situ combustion, EOR, supercritical water, georeactor]
1〒980-8579 仙台市青葉区荒巻字青葉01 東北大学大学院工学研究科地球工学専攻
Department of Resources Engineering, faculty of Engineering, Tohoku
University, Aramaki-aza Aoba, Aobaku, Sendai 980-77
2〒981-0952 仙台市青葉区中山7-2-1 東北電力?褐、究開発センターエネルギー・環境G
Applied Technology R&D center, Tohoku Electric Power Co., Inc. 7-2-1,
Nakayama, Aoba-ku, Sendai 981-0952



実験ワンポイント
Rev. High Pressure Sci. Technol. 3-3,264-265(1994)
ダイヤモンド・アンビル・セルを用いた超高圧ブリュアン散乱測定
High-Pressure Brillouin Scattering Measurements Using a Diamond Anvil Cell
佐々木 重雄 清水 宏晏
Shigeo SASAKI, Hiroyasu SHIMIZU
High-pressure Brillouin scattering measurements with a diamond anvil cell are presented for determinations of acoustic velocity, refractive index, elastic constants and equation of state.

[DAC, Brillouin scattering, acoustic velocity, refractive index, elastic constants, equation of state]
〒501-1193 岐阜市柳戸1-1 岐阜大学工学部電気電子工学科
Department of Electronics and Computer Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193




〒606-0805
京都市左京区下鴨森本町 15 (財)生産開発科学研究所内
日本高圧力学会事務局
Tel (075)721-0376 Fax (075)723-9629
koatsu@mbox.kyoto-inet.or.jp